论文标题

$ n $ th $ k $ generalized fibonacci的公式

Formula for the $n$th $k$-Generalized Fibonacci-like Number

论文作者

Gemino, John Alexis B., Balsomo, Alexander J., Parreño-Lachica, Geneveve M., Libre, Dave Ryll B., Nuñeza, Marc Raniel A.

论文摘要

在本文中,我们为$ k $ generalized fibonacci样序列的$ n $ n $ th $ n $ n $ n $ n $ n $ n $ n $ k $ k $任意的初始术语的概括提供了一个公式,其中成功的条款是通过添加其先前的$ k $项来获得的。 $ k $ generalized fibonacci样序列的$ n $ n $ ten的公式是通过观察类似fibonAcci的n式衍生公式中的模式来获得的,类似fibonacci,类似Tribonacci,类似Tetrabonacci类似于Tetrabonacci。还得出了$ k $循环的斐波那契序列的公式,并用于证明本文的主要结果。

In this paper we provided a formula for the $n$th term of the $k$-generalized Fibonacci-like sequence, a generalization of the well-known Fibonacci sequence, having $k$ arbitrary initial terms, where the succeeding terms are obtained by adding its previous $k$ terms. The formula for the $n$th term of the $k$-generalized Fibonacci-like sequence was obtained by observing patterns in the derived formula for the nth term of the Fibonacci-like, Tribonacci-like, and Tetrabonacci-like sequence. The formula for the $k$-generalized Fibonacci sequence was also derived and was used in the process of proving the main result of this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源