论文标题
检测恶意软件攻击的深度学习模型
Deep Learning Models for Detecting Malware Attacks
论文作者
论文摘要
恶意软件是当今最常见和最严重的网络攻击之一。恶意软件感染了数百万个设备,并可以执行几项恶意活动,包括采矿敏感数据,加密数据,严重的系统性能等等。因此,恶意软件检测对于保护我们的计算机和移动设备免受恶意软件攻击至关重要。深度学习(DL)是用于检测恶意软件的新兴和有前途的技术之一。最近针对台式机和移动平台的恶意软件变体生产的高生产使DL算法具有强大的方法来构建可扩展和高级恶意软件检测模型,因为它们可以处理大数据集。这项工作探讨了当前的深度学习技术,用于检测Windows,Linux和Android平台上的恶意软件攻击。具体而言,我们提出了不同类别的DL算法,网络优化器和正则化方法。提出了用于实施DL模型的不同损失功能,激活功能和框架。我们还介绍了功能提取方法,并对最新的基于DL的模型进行了评论,以检测上述平台上的恶意软件攻击。此外,这项工作提出了有关恶意软件检测的重大研究问题,包括未来的方向,以进一步推进该领域的知识和研究。
Malware is one of the most common and severe cyber-attack today. Malware infects millions of devices and can perform several malicious activities including mining sensitive data, encrypting data, crippling system performance, and many more. Hence, malware detection is crucial to protect our computers and mobile devices from malware attacks. Deep learning (DL) is one of the emerging and promising technologies for detecting malware. The recent high production of malware variants against desktop and mobile platforms makes DL algorithms powerful approaches for building scalable and advanced malware detection models as they can handle big datasets. This work explores current deep learning technologies for detecting malware attacks on the Windows, Linux, and Android platforms. Specifically, we present different categories of DL algorithms, network optimizers, and regularization methods. Different loss functions, activation functions, and frameworks for implementing DL models are presented. We also present feature extraction approaches and a review of recent DL-based models for detecting malware attacks on the above platforms. Furthermore, this work presents major research issues on malware detection including future directions to further advance knowledge and research in this field.