论文标题
稳态的敏感性在具有应用于马尔可夫链和化学反应网络的网络中
Sensitivity of steady states in networks with application to Markov chains and chemical reaction networks
论文作者
论文摘要
我们考虑具有潜在网络结构的动力学的稳态状态。我们研究稳态如何响应网络参数中的小扰动以及该灵敏度如何连接到网络结构。我们引入了典型的线性响应方程并确定其灵敏度。该抽象结果用于研究网络上两个共同动力学的稳态的敏感性:连续时间马尔可夫链和确定性建模的化学反应网络。对于连续的马尔可夫链,我们能够根据基础网络结构有效地计算响应的迹象。化学反应网络的研究将灵敏度分析扩展到具有更复杂的网络结构的打开系统。
We consider steady states of dynamics that have an underlying network structure. We study how a steady state responds to small perturbations in the network parameters and how this sensitivity is connected to the network structure. We introduce a prototypical linear response equation and determine its sensitivity. This abstract result is applied to study the sensitivity of steady states in two common dynamics on networks: continuous-time Markov chains and deterministically modelled chemical reaction networks. For continuous-time Markov chains, we are able to efficiently compute the signs of the response in terms of the underlying network structure. The study of chemical reaction networks extends the sensitivity analysis to open systems with more complex network structures.