论文标题
通过有效的渠道关注在线持续学习来选择相关知识
Selecting Related Knowledge via Efficient Channel Attention for Online Continual Learning
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Continual learning aims to learn a sequence of tasks by leveraging the knowledge acquired in the past in an online-learning manner while being able to perform well on all previous tasks, this ability is crucial to the artificial intelligence (AI) system, hence continual learning is more suitable for most real-word and complex applicative scenarios compared to the traditional learning pattern. However, the current models usually learn a generic representation base on the class label on each task and an effective strategy is selected to avoid catastrophic forgetting. We postulate that selecting the related and useful parts only from the knowledge obtained to perform each task is more effective than utilizing the whole knowledge. Based on this fact, in this paper we propose a new framework, named Selecting Related Knowledge for Online Continual Learning (SRKOCL), which incorporates an additional efficient channel attention mechanism to pick the particular related knowledge for every task. Our model also combines experience replay and knowledge distillation to circumvent the catastrophic forgetting. Finally, extensive experiments are conducted on different benchmarks and the competitive experimental results demonstrate that our proposed SRKOCL is a promised approach against the state-of-the-art.