论文标题
英语,葡萄牙语和西班牙语的词汇简化基准
Lexical Simplification Benchmarks for English, Portuguese, and Spanish
论文作者
论文摘要
即使在高度发达的国家中,多达15-30%的人口只能理解使用基本词汇编写的文本。他们对日常文本的理解是有限的,这阻止了他们在社会中发挥积极作用,并就医疗保健,法律代表或民主选择做出明智的决定。词汇简化是一项自然语言处理任务,旨在通过更简单地替换复杂的词汇和表达方式来使每个人都可以理解文本,同时保留原始含义。在过去的20年中,它引起了极大的关注,并且已经针对各种语言提出了全自动词汇简化系统。该领域进步的主要障碍是缺少用于构建和评估词汇简化系统的高质量数据集。我们提供了一个新的基于英语,西班牙语和(巴西)葡萄牙语的基准简化基准数据集,并提供有关数据选择和注释程序的详细信息。这是第一个可直接比较三种语言的词汇简化系统的数据集。为了展示数据集的可用性,我们将具有不同体系结构(神经与非神经)的两个最先进的词汇简化系统调整为所有三种语言(英语,西班牙语和巴西葡萄牙语),并在我们的新数据集上评估他们的表现。为了进行更公平的比较,我们使用多种评估措施来捕获系统功效的各个方面,并讨论其优势和缺点。我们发现,最先进的神经词汇简化系统优于所有三种语言中最先进的非神经词汇简化系统。更重要的是,我们发现最先进的神经词汇简化系统对英语的表现要比西班牙和葡萄牙语要好得多。
Even in highly-developed countries, as many as 15-30\% of the population can only understand texts written using a basic vocabulary. Their understanding of everyday texts is limited, which prevents them from taking an active role in society and making informed decisions regarding healthcare, legal representation, or democratic choice. Lexical simplification is a natural language processing task that aims to make text understandable to everyone by replacing complex vocabulary and expressions with simpler ones, while preserving the original meaning. It has attracted considerable attention in the last 20 years, and fully automatic lexical simplification systems have been proposed for various languages. The main obstacle for the progress of the field is the absence of high-quality datasets for building and evaluating lexical simplification systems. We present a new benchmark dataset for lexical simplification in English, Spanish, and (Brazilian) Portuguese, and provide details about data selection and annotation procedures. This is the first dataset that offers a direct comparison of lexical simplification systems for three languages. To showcase the usability of the dataset, we adapt two state-of-the-art lexical simplification systems with differing architectures (neural vs.\ non-neural) to all three languages (English, Spanish, and Brazilian Portuguese) and evaluate their performances on our new dataset. For a fairer comparison, we use several evaluation measures which capture varied aspects of the systems' efficacy, and discuss their strengths and weaknesses. We find a state-of-the-art neural lexical simplification system outperforms a state-of-the-art non-neural lexical simplification system in all three languages. More importantly, we find that the state-of-the-art neural lexical simplification systems perform significantly better for English than for Spanish and Portuguese.