论文标题
使用车辆和路边数据驱动安全预测和安全路线映射
Driving Safety Prediction and Safe Route Mapping Using In-vehicle and Roadside Data
论文作者
论文摘要
通常根据历史崩溃数据来实行道路的风险评估。有时缺少有关驾驶员行为和实时交通情况的信息。在本文中,安全的路线映射(SRM)模型是一种开发道路动态风险热图的方法,可以在做出预测时考虑驾驶员行为。 Android应用程序旨在收集驱动程序的信息并将其上传到服务器。在服务器上,面部识别提取了驱动程序的数据,例如面部地标,凝视方向和情绪。检测到驾驶员的嗜睡和分心,并评估驾驶性能。同时,动态的流量信息由路边摄像头捕获并上传到同一家服务器。采用基于纵向扫描的动脉交通视频分析来识别视频中的车辆以建立速度和轨迹概况。基于这些数据,引入了LightGBM模型,以预测接下来一两秒钟的驾驶员的冲突指数。然后,使用模糊逻辑模型合并了多个数据源,包括历史崩溃计数和预测的交通冲突指标,以计算道路段的风险评分。使用从实际的流量交叉点和驾驶模拟平台收集的数据来说明所提出的SRM模型。预测结果表明该模型是准确的,并且增加的驱动程序行为功能将改善模型的性能。最后,为可视化目的而生成风险热图。当局可以使用动态热图来指定安全的走廊,并派遣执法和驱动程序,以预警和旅行计划。
Risk assessment of roadways is commonly practiced based on historical crash data. Information on driver behaviors and real-time traffic situations is sometimes missing. In this paper, the Safe Route Mapping (SRM) model, a methodology for developing dynamic risk heat maps of roadways, is extended to consider driver behaviors when making predictions. An Android App is designed to gather drivers' information and upload it to a server. On the server, facial recognition extracts drivers' data, such as facial landmarks, gaze directions, and emotions. The driver's drowsiness and distraction are detected, and driving performance is evaluated. Meanwhile, dynamic traffic information is captured by a roadside camera and uploaded to the same server. A longitudinal-scanline-based arterial traffic video analytics is applied to recognize vehicles from the video to build speed and trajectory profiles. Based on these data, a LightGBM model is introduced to predict conflict indices for drivers in the next one or two seconds. Then, multiple data sources, including historical crash counts and predicted traffic conflict indicators, are combined using a Fuzzy logic model to calculate risk scores for road segments. The proposed SRM model is illustrated using data collected from an actual traffic intersection and a driving simulation platform. The prediction results show that the model is accurate, and the added driver behavior features will improve the model's performance. Finally, risk heat maps are generated for visualization purposes. The authorities can use the dynamic heat map to designate safe corridors and dispatch law enforcement and drivers for early warning and trip planning.