论文标题

hodgerank和光谱方法的故事:针对等级聚合的目标攻击是对抗游戏的固定点

A Tale of HodgeRank and Spectral Method: Target Attack Against Rank Aggregation Is the Fixed Point of Adversarial Game

论文作者

Ma, Ke, Xu, Qianqian, Zeng, Jinshan, Li, Guorong, Cao, Xiaochun, Huang, Qingming

论文摘要

与成对比较的排名聚合显示了选举,体育比赛,建议和信息检索的有希望的结果。但是,与众多有关计算和统计特征的研究工作相比,对这种算法的安全问题几乎没有关注。在巨额利润的推动下,潜在的对手具有强大的动力和动力来操纵排名名单。同时,文献中没有很好地研究等级聚集方法的内在脆弱性。为了充分了解可能的风险,我们专注于有目的的对手,他们希望通过在本文中修改成对数据来指定汇总结果。从动态系统的角度来看,具有目标排名列表的攻击行为是属于对手和受害者组成的固定点。为了执行目标攻击,我们将对手与受害者之间的相互作用作为游戏理论框架,该框架由两个连续的操作员组成,同时建立了NASH平衡。然后,构建了针对Hodgerank和RankCentrality的两个程序,以产生原始数据的修改。此外,我们证明,一旦对手掌握了完整的信息,受害者将产生目标排名列表。值得注意的是,所提出的方法允许对手只保留不完整的信息或不完美的反馈并执行有目的的攻击。一系列玩具模拟和几个现实世界数据实验证明了建议的目标攻击策略的有效性。这些实验结果表明,所提出的方法可以实现攻击者的目标,即扰动排名列表的领先候选人是对手指定的。

Rank aggregation with pairwise comparisons has shown promising results in elections, sports competitions, recommendations, and information retrieval. However, little attention has been paid to the security issue of such algorithms, in contrast to numerous research work on the computational and statistical characteristics. Driven by huge profits, the potential adversary has strong motivation and incentives to manipulate the ranking list. Meanwhile, the intrinsic vulnerability of the rank aggregation methods is not well studied in the literature. To fully understand the possible risks, we focus on the purposeful adversary who desires to designate the aggregated results by modifying the pairwise data in this paper. From the perspective of the dynamical system, the attack behavior with a target ranking list is a fixed point belonging to the composition of the adversary and the victim. To perform the targeted attack, we formulate the interaction between the adversary and the victim as a game-theoretic framework consisting of two continuous operators while Nash equilibrium is established. Then two procedures against HodgeRank and RankCentrality are constructed to produce the modification of the original data. Furthermore, we prove that the victims will produce the target ranking list once the adversary masters the complete information. It is noteworthy that the proposed methods allow the adversary only to hold incomplete information or imperfect feedback and perform the purposeful attack. The effectiveness of the suggested target attack strategies is demonstrated by a series of toy simulations and several real-world data experiments. These experimental results show that the proposed methods could achieve the attacker's goal in the sense that the leading candidate of the perturbed ranking list is the designated one by the adversary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源