论文标题
使用基于深层图像和原始强度轮廓特征检索的知识数据库的传输功能设计
A Transfer Function Design Using A Knowledge Database based on Deep Image and Primitive Intensity Profile Features Retrieval
论文作者
论文摘要
传递函数(TF)通过能够与之相互作用的结构(SOIS)进行互动并确保其适当的可见性来准确地识别感兴趣的结构(SOIS),从而发挥了直接体积渲染(DVR)的关键作用。尝试减轻TF设计的重复手动过程的尝试导致了使用域专家由预先设计的TF组成的知识数据库的方法。在这些方法中,用户可以将知识数据库导航,以找到最合适的预设的TF,以可视化SOIS。尽管这些方法有可能减少工作量以生成TF,但是它们需要知识数据库的手动TF导航,以及可能对所选TF进行微调以适合输入。在这项工作中,我们提出了一种TF设计方法,在其中我们介绍了新的基于内容的检索(CBR)来自动浏览知识数据库。我们的知识数据库不是预设的TF,而是带有SOI标签的图像量。给定输入图像量,我们的CBR方法从知识数据库中检索相关的图像量(带有SOI标签)。然后将检索的标签用于生成和优化输入的TF。这种方法不需要任何手动TF导航和微调。为了改善SOI检索性能,我们提出了一个两阶段的CBR方案,以互补的方式使用局部强度和区域深度图像特征表示。我们证明了我们的方法与常规CBR方法的可视化功能,其中使用了匹配算法的强度曲线,并且在医学图像量可视化中具有潜在的用例,其中DVR在不同的临床用法中起着必不可少的作用。
Transfer function (TF) plays a key role for the generation of direct volume rendering (DVR), by enabling accurate identification of structures of interest (SOIs) interactively as well as ensuring appropriate visibility of them. Attempts at mitigating the repetitive manual process of TF design have led to approaches that make use of a knowledge database consisting of pre-designed TFs by domain experts. In these approaches, a user navigates the knowledge database to find the most suitable pre-designed TF for their input volume to visualize the SOIs. Although these approaches potentially reduce the workload to generate the TFs, they, however, require manual TF navigation of the knowledge database, as well as the likely fine tuning of the selected TF to suit the input. In this work, we propose a TF design approach where we introduce a new content-based retrieval (CBR) to automatically navigate the knowledge database. Instead of pre-designed TFs, our knowledge database contains image volumes with SOI labels. Given an input image volume, our CBR approach retrieves relevant image volumes (with SOI labels) from the knowledge database; the retrieved labels are then used to generate and optimize TFs of the input. This approach does not need any manual TF navigation and fine tuning. For improving SOI retrieval performance, we propose a two-stage CBR scheme to enable the use of local intensity and regional deep image feature representations in a complementary manner. We demonstrate the capabilities of our approach with comparison to a conventional CBR approach in visualization, where an intensity profile matching algorithm is used, and also with potential use-cases in medical image volume visualization where DVR plays an indispensable role for different clinical usages.