论文标题

太阳:在文本到SQL解析器中探索固有的不确定性

SUN: Exploring Intrinsic Uncertainties in Text-to-SQL Parsers

论文作者

Qin, Bowen, Wang, Lihan, Hui, Binyuan, Li, Bowen, Wei, Xiangpeng, Li, Binhua, Huang, Fei, Si, Luo, Yang, Min, Li, Yongbin

论文摘要

本文旨在通过探索基于神经网络的方法(称为太阳)中的内在不确定性来提高文本到SQL解析的性能。从数据不确定性的角度来看,可以毫无疑问地,可以从多个语义等效的问题中学到单个SQL。从以前的方法中不同的方法差异,这些方法仅限于一对一的映射,我们提出了一个数据不确定性约束,以探索在多个语言等量的问题之间探索潜在的互补语义信息(许多与之相关的功能(许多与之相关的特征),并与之相关联(许多与之相关)。通过这种方式,我们可以降低学习表示的敏感性并改善解析器的鲁棒性。从模型的不确定性角度来看,神经网络的权重之间通常存在结构信息(依赖性)。为了提高神经文本到SQL解析器的普遍性和稳定性,我们提出了模型不确定性约束,以通过强制执行不同扰动编码网络的输出表示形式来完善查询表示形式,以使其彼此一致。在五个基准数据集上进行的广泛实验表明,我们的方法显着优于强大的竞争对手,并实现了新的最新结果。为了获得可重复性,我们在https://github.com/alibabaresearch/damo-convai/tree/main/main/sunsql上发布代码和数据。

This paper aims to improve the performance of text-to-SQL parsing by exploring the intrinsic uncertainties in the neural network based approaches (called SUN). From the data uncertainty perspective, it is indisputable that a single SQL can be learned from multiple semantically-equivalent questions.Different from previous methods that are limited to one-to-one mapping, we propose a data uncertainty constraint to explore the underlying complementary semantic information among multiple semantically-equivalent questions (many-to-one) and learn the robust feature representations with reduced spurious associations. In this way, we can reduce the sensitivity of the learned representations and improve the robustness of the parser. From the model uncertainty perspective, there is often structural information (dependence) among the weights of neural networks. To improve the generalizability and stability of neural text-to-SQL parsers, we propose a model uncertainty constraint to refine the query representations by enforcing the output representations of different perturbed encoding networks to be consistent with each other. Extensive experiments on five benchmark datasets demonstrate that our method significantly outperforms strong competitors and achieves new state-of-the-art results. For reproducibility, we release our code and data at https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/sunsql.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源