论文标题

由自旋偏振电流诱导的多晶MN3SN薄膜中的磁化切换

Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current

论文作者

Xie, Hang, Chen, Xin, Zhang, Qi, Mu, Zhiqiang, Zhang, Xinhai, Yan, Binghai, Wu, Yihong

论文摘要

旋转的电气操作对于设计最先进的自旋装置至关重要,并且通常依赖于第二个重金属材料注入的自旋电流。手性抗铁磁铁产生旋转电流的事实激发了我们使用自启发的自旋扭矩探索手性旋转的磁化切换。在这里,我们通过观察从传统的自旋轨道扭矩到自启发的自旋扭矩的交叉,在增加TA/MGO/MGO/MGO/MGO/MN3SN多晶膜时,通过观察到MN3SN中非共线性抗磁性状态的电动转换。从TA层的自旋电流注入可以通过改变MGO厚度来控制,甚至可以阻塞,但是开关即使在较大的MGO厚度下也可以维持。此外,当MgO厚度超过3 nm左右时,开关极性会逆转,这是由于TA层的旋转电流注入引起的自旋轨道扭矩方案无法解释。在MGO/MN3SN和Ti/MN3SN双层中,还观察到明显的电流诱导的切换,其中外部注入了旋转霍尔电流到MN3SN是可以忽略的。通过自旋极化电流诱导的谷物间自旋转移扭矩解释了实验观测。我们的发现为非连续性抗磁磁性状态电气操作提供了替代途径,而无需诉诸于常规的双层结构。

Electrical manipulation of spins is essential to design state-of-the-art spintronic devices and commonly relies on the spin current injected from a second heavy-metal material. The fact that chiral antiferromagnets produce spin current inspires us to explore the magnetization switching of chiral spins using self-generated spin torque. Here, we demonstrate the electric switching of noncollinear antiferromagnetic state in Mn3Sn by observing a crossover from conventional spin-orbit torque to the self-generated spin torque when increasing the MgO thickness in Ta/MgO/Mn3Sn polycrystalline films. The spin current injection from the Ta layer can be controlled and even blocked by varying the MgO thickness, but the switching sustains even at a large MgO thickness. Furthermore, the switching polarity reverses when the MgO thickness exceeds around 3 nm, which cannot be explained by the spin-orbit torque scenario due to spin current injection from the Ta layer. Evident current-induced switching is also observed in MgO/Mn3Sn and Ti/Mn3Sn bilayers, where external injection of spin Hall current to Mn3Sn is negligible. The inter-grain spin-transfer torque induced by spin-polarized current explains the experimental observations. Our findings provide an alternative pathway for electrical manipulation of non-collinear antiferromagnetic state without resorting to the conventional bilayer structure.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源