论文标题
晶格量子重力:EDT和CDT
Lattice Quantum Gravity: EDT and CDT
论文作者
论文摘要
本文概述了所谓的欧几里得动力学三角剖分(EDT)和因果动力学三角剖分(CDT)作为量子重力的晶格正规化。在二维量子重力的情况下,晶格的正规化非常成功,在那里,晶格理论确实提供了连续定义良好的量子重力理论的正则化。在四维时空中,爱因斯坦 - 希尔伯特(Einstein-Hilbert)的作用导致了一种重力理论,该理论不能作为平坦时空周围的扰动量子理论而重新分配。讨论了如何使用EDT或CDT形式的晶格重力来搜索渐近安全精神的晶格重新归一化组的非扰动紫外线固定点。通过这种方式,在长度尺度上也可以定义一个小于普朗克长度的重力理论。
This article is an overview of the use of so-called Euclidean Dynamical Triangulations (EDT) and Causal Dynamical Triangulations (CDT) as lattice regularizations of quantum gravity. The lattice regularizations have been very successful in the case of two-dimensional quantum gravity, where the lattice theories indeed provide regularizations of continuum well defined quantum gravity theories. In four-dimensional spacetime the Einstein-Hilbert action leads to a theory of gravity which is not renormalizable as a perturbative quantum theory around flat spacetime. It is discussed how lattice gravity in the form of EDT or CDT can be used to search for a non-perturbative UV fixed point of the lattice renormalization group in the spirit of asymptotic safety. In this way it might be possible to define a quantum theory of gravity also at lengthscales smaller than the Planck length.