论文标题
某些确定性增厚的局部协同学
Local Cohomology of Certain Determinantal Thickenings
论文作者
论文摘要
令$ r = \ mathbb {c} [\ {x_ {ij} \}] $是$ m> n $的$ MN $变量中的多项式函数的环。将这些变量的$ x $设置为$ m \ times n $矩阵,$ i:= i_n(x)$是$ x $的最大未成年人的理想。我们考虑戒指$ r/i^t $;对于$ t \ gg 0 $,$ r/i^t $的深度等于$ n^2-1 $,我们证明每个局部共同体模块$ h^{n^2-1} _ {\ frak {m}}}(r/i^t)$ is Cyclic $ r $ -module。我们还计算了$ h^{n^2-1} _ {\ frak {m}}}(r/i^t)$的an灭者,从而完全确定其$ r $ -MODULE结构。 在$ x $是$ n \ times(n-1)$矩阵的情况下,我们描述了最大未成年人的$ t $能力的Koszul综合体与$ r/i^t $的免费分辨率之间的地图。我们使用此映射明确描述模块$ \ permatatorName {ext} _r^n(r/i^t,r)$作为顶级本地共同体模块的子模块的子模块$ h_i^n(r)$。此外,我们可以在微分运算符方面意识到过滤$ \ bigcup_i \ operatoTorname {ext} _r^n(r/i^t,r)= h_i^n(r)$。 Utilizing this description, along with an explicit isomorphism $H_I^n(R) \cong H_{\frak{m}}^{n(n-1)}(R)$, we determine the annihilator of $\operatorname{Ext}_R ^n(R/I^t,R)$ and hence by graded local duality give another computation of the annihilator of $ h^{(n-1)^2-1} _ {\ frak {m}}}(r/i^t)$。
Let $R=\mathbb{C}[\{x_{ij}\}]$ be the ring of polynomial functions in $mn$ variables where $m> n$. Set $X$ to be the $m\times n$ matrix in these variables and $I:=I_n(X)$ the ideal of maximal minors of $X$. We consider the rings $R/I^t$; for $t\gg 0$ the depth of $R/I^t$ is equal to $n^2-1$, and we show that each local cohomology module $H^{n^2-1}_{\frak{m}}(R/I^t)$ is a cyclic $R$-module. We also compute the annihilator of $H^{n^2-1}_{\frak{m}}(R/I^t)$ thereby completely determining its $R$-module structure. In the case that $X$ is a $n\times (n-1)$ matrix we describe a map between the Koszul complex of the $t$-powers of the maximal minors and a free resolution of $R/I^t$. We use this map to explicitly describe the modules $\operatorname{Ext}_R ^n(R/I^t,R)$ as submodules of the top local cohomology module $H_I^n(R)$. Moreover, we can realize the filtration $\bigcup_i\operatorname{Ext}_R ^n(R/I^t,R)= H_I^n(R)$ in terms of differential operators. Utilizing this description, along with an explicit isomorphism $H_I^n(R) \cong H_{\frak{m}}^{n(n-1)}(R)$, we determine the annihilator of $\operatorname{Ext}_R ^n(R/I^t,R)$ and hence by graded local duality give another computation of the annihilator of $H^{(n-1)^2-1}_{\frak{m}}(R/I^t)$.