论文标题

通过操作员放大,Ramanujan几乎从任意扩展器扩展器

Almost Ramanujan Expanders from Arbitrary Expanders via Operator Amplification

论文作者

Jeronimo, Fernando Granha, Mittal, Tushant, Roy, Sourya, Wigderson, Avi

论文摘要

我们给出了一种有效的算法,该算法将任何有界度的扩展器图转换为几乎最佳的另一个算法(即,接近季度,$ d \ leq 1/λ^{2+o(1)} $之间的(任何需要的)光谱膨胀$λ$和deg d $ d $之间的(任何需要的)光谱扩展。此外,该算法是本地的:每个顶点都可以计算其新邻居作为其Radius $ O(\ log(1/λ))$的原始邻域的子集。最佳的二次权衡被称为Ramanujan Bound,因此我们的建筑几乎使Ramanujan扩展器与任意扩张器相关。 转换的局部性保留了原始图的结构特性,因此具有许多后果。我们的转换应用于Cayley图,表明任何扩展的有限组几乎都有Ramanujan扩展的发电机。同样,从现有(次优的)构造中,可以从现有的(次优)构造中获得几乎最佳的量子扩展器,尺寸扩展器,单调扩展器等的明确构造。另一个结果是在原始(次优)扩展器上进行的“偏差”随机步行,几乎最佳的收敛速率。当程度不界限或扩展不是恒定时,我们的转换也适用。 我们通过在他的突破性论文[STOC 2017]中对Ta-Shma技术的概括获得结果,该技术用于获得明确的几乎最佳的二元法规。具体而言,我们的光谱放大以非常自然的方式将Ta-Shma对偏置扩增的分析从标量扩大到任意维的矩阵。奇怪的是,尽管Ta-Shma的显式偏见放大使众所周知的概率论点(在吉尔伯特 - 瓦尔沙莫夫绑定的基础上),但似乎没有已知的概率(或其他存在的)方式来实现我们的明显(“高维度”)光谱放大。

We give an efficient algorithm that transforms any bounded degree expander graph into another that achieves almost optimal (namely, near-quadratic, $d \leq 1/λ^{2+o(1)}$) trade-off between (any desired) spectral expansion $λ$ and degree $d$. Furthermore, the algorithm is local: every vertex can compute its new neighbors as a subset of its original neighborhood of radius $O(\log(1/λ))$. The optimal quadratic trade-off is known as the Ramanujan bound, so our construction gives almost Ramanujan expanders from arbitrary expanders. The locality of the transformation preserves structural properties of the original graph, and thus has many consequences. Applied to Cayley graphs, our transformation shows that any expanding finite group has almost Ramanujan expanding generators. Similarly, one can obtain almost optimal explicit constructions of quantum expanders, dimension expanders, monotone expanders, etc., from existing (suboptimal) constructions of such objects. Another consequence is a "derandomized" random walk on the original (suboptimal) expander with almost optimal convergence rate. Our transformation also applies when the degree is not bounded or the expansion is not constant. We obtain our results by a generalization of Ta-Shma's technique in his breakthrough paper [STOC 2017], used to obtain explicit almost optimal binary codes. Specifically, our spectral amplification extends Ta-Shma's analysis of bias amplification from scalars to matrices of arbitrary dimension in a very natural way. Curiously, while Ta-Shma's explicit bias amplification derandomizes a well-known probabilistic argument (underlying the Gilbert--Varshamov bound), there seems to be no known probabilistic (or other existential) way of achieving our explicit ("high-dimensional") spectral amplification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源