论文标题
通过SMDPS的多尺度自适应调度和电动限制的无人机延期的路径计划
Multiscale Adaptive Scheduling and Path-Planning for Power-Constrained UAV-Relays via SMDPs
论文作者
论文摘要
我们描述了分散的旋转翼无人机套件的编排,从而增强了陆地基站的覆盖范围和服务能力。我们的目标是最大程度地减少在泊松到达下的地面用户处理传输请求的时间平均水平的潜伏期,但要受到平均无人机功率约束。配备速率适应能够有效利用空对地的通道随机性,我们首先通过半马尔可夫决策过程制定了单个继电器的最佳控制策略,并具有针对无人机轨迹设计的竞争性群体优化。因此,我们详细介绍了这种结构的多尺度分解:径向等待速度的外部决策和结束位置优化了预期的长期延迟功率权衡;因此,关于角度等待速度,服务时间表和无人机轨迹的内部决策贪婪地最大程度地减少了瞬时延迟功率成本。接下来,通过复制和共识驱动的命令和控制,将无人机群概括为群,该政策嵌入了传播最大化和冲突解决启发式方法。我们证明,我们的框架在平均服务潜伏期和平均每个UAV功耗方面提供了卓越的性能:相对于静态无人机部署的数据有效载荷更快,比Deep-Q网络解决方案快2倍;值得注意的是,我们的计划中的一个继电器在联合连续的凸近似政策下超出了三个接力赛62%。
We describe the orchestration of a decentralized swarm of rotary-wing UAV-relays, augmenting the coverage and service capabilities of a terrestrial base station. Our goal is to minimize the time-average service latencies involved in handling transmission requests from ground users under Poisson arrivals, subject to an average UAV power constraint. Equipped with rate adaptation to efficiently leverage air-to-ground channel stochastics, we first derive the optimal control policy for a single relay via a semi-Markov decision process formulation, with competitive swarm optimization for UAV trajectory design. Accordingly, we detail a multiscale decomposition of this construction: outer decisions on radial wait velocities and end positions optimize the expected long-term delay-power trade-off; consequently, inner decisions on angular wait velocities, service schedules, and UAV trajectories greedily minimize the instantaneous delay-power costs. Next, generalizing to UAV swarms via replication and consensus-driven command-and-control, this policy is embedded with spread maximization and conflict resolution heuristics. We demonstrate that our framework offers superior performance with respect to average service latencies and average per-UAV power consumption: 11x faster data payload delivery relative to static UAV-relay deployments and 2x faster than a deep-Q network solution; remarkably, one relay with our scheme outclasses three relays under a joint successive convex approximation policy by 62%.