论文标题
学习:学习基于知识的神经普通微分方程对机器人的学习增强的基于模型的状态估计
LEARNEST: LEARNing Enhanced Model-based State ESTimation for Robots using Knowledge-based Neural Ordinary Differential Equations
论文作者
论文摘要
国家估计是许多机器人应用中的重要方面。在这项工作中,我们考虑通过增强状态估计算法中使用的动力学模型来获得机器人系统的准确状态估计的任务。现有的框架,例如移动视野估计(MHE)和无气味的卡尔曼过滤器(UKF),为合并非线性动力学和测量模型提供了灵活性。但是,这意味着这些算法中的动力学模型必须足够准确,以保证状态估计的准确性。为了增强动力学模型并提高估计准确性,我们利用了一个深度学习框架,称为基于知识的神经差分方程(KNODES)。 KNODE框架将先验知识嵌入到训练过程中,并通过将先前的第一原理模型与神经常见微分方程(NODE)模型融合来合成精确的混合模型。在我们提出的最新框架中,我们将数据驱动的模型集成到两种基于新型模型的状态估计算法中,它们表示为Knode-Mhe和Knode-UKF。在许多机器人应用中,将这两种算法与它们的常规对应物进行了比较。使用部分测量值,地面机器人的定位以及二次估计的状态估计。通过使用现实世界实验数据的模拟和测试,我们证明了所提出的学习增强状态估计框架的多功能性和功效。
State estimation is an important aspect in many robotics applications. In this work, we consider the task of obtaining accurate state estimates for robotic systems by enhancing the dynamics model used in state estimation algorithms. Existing frameworks such as moving horizon estimation (MHE) and the unscented Kalman filter (UKF) provide the flexibility to incorporate nonlinear dynamics and measurement models. However, this implies that the dynamics model within these algorithms has to be sufficiently accurate in order to warrant the accuracy of the state estimates. To enhance the dynamics models and improve the estimation accuracy, we utilize a deep learning framework known as knowledge-based neural ordinary differential equations (KNODEs). The KNODE framework embeds prior knowledge into the training procedure and synthesizes an accurate hybrid model by fusing a prior first-principles model with a neural ordinary differential equation (NODE) model. In our proposed LEARNEST framework, we integrate the data-driven model into two novel model-based state estimation algorithms, which are denoted as KNODE-MHE and KNODE-UKF. These two algorithms are compared against their conventional counterparts across a number of robotic applications; state estimation for a cartpole system using partial measurements, localization for a ground robot, as well as state estimation for a quadrotor. Through simulations and tests using real-world experimental data, we demonstrate the versatility and efficacy of the proposed learning-enhanced state estimation framework.