论文标题

薄套件的添加剂完成

Additive completition of thin sets

论文作者

Fang, Jin-Hui, Sándor, Csaba

论文摘要

如果$ a+b $包含所有足够大的整数和$ a(x)b(x)/x \ rightarrow1 $,则两组$ a,b $的正整数称为\ emph {确切的添加剂}。令$ a = \ {a_1 <a_2 <\ cdots \} $为一组正整数。用$ a $ a $和$ a^*(x)$的计数函数表示$ a(x)$,用$ a \ bigcap [1,x] $中的最大元素。遵循Ruzsa和Chen-fang的工作,我们证明,对于确切的添加剂,$ a,b $与$ \ frac {a_ {n+1}}} {na_n} \ rightarrow \ rightarrow \ infty $,我们有$ a(x)b(x)b(x)-x \ ge ge ge ge \ frac {a^*(x)} {a(x)} +o \ left(\ frac {a^*(x)} {a(x)^2} \ right)$ as $ x \ rightarrow +\ rightarrow +\ infty $。另一方面,我们还构建了精确的添加剂$ a,b $与$ \ frac {a_ {n+1}}} {na_n} \ rightarrow \ infty \ infty $,以至于$ a(x)b(x)b(x)-x \ le le \ frac {a^*(x)} {a(x)}+(1+o(1))\ left(\ frac {a^*(x)} {a(x)^2} \ right)$保留了无限的许多正整数$ x $。

Two sets $A,B$ of positive integers are called \emph{exact additive complements}, if $A+B$ contains all sufficiently large integers and $A(x)B(x)/x\rightarrow1$. Let $A=\{a_1<a_2<\cdots\}$ be a set of positive integers. Denote $A(x)$ by the counting function of $A$ and $a^*(x)$ by the largest element in $A\bigcap [1,x]$. Following the work of Ruzsa and Chen-Fang, we prove that, for exact additive complements $A,B$ with $\frac{a_{n+1}}{na_n}\rightarrow\infty$, we have $A(x)B(x)-x\ge \frac{a^*(x)}{A(x)}+o\left(\frac{a^*(x)}{A(x)^2}\right)$ as $x\rightarrow +\infty$. On the other hand, we also construct exact additive complements $A,B$ with $\frac{a_{n+1}}{na_n}\rightarrow\infty$ such that $A(x)B(x)-x\le \frac{a^*(x)}{A(x)}+(1+o(1))\left(\frac{a^*(x)}{A(x)^2}\right)$ holds for infinitely many positive integers $x$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源