论文标题

LMBAO:LIDAR调整探针仪的地标地图

LMBAO: A Landmark Map for Bundle Adjustment Odometry in LiDAR SLAM

论文作者

Zhang, Letian, Wang, Jinping, Jie, Lu, Chen, Nanjie, Tan, Xiaojun, Duan, Zhifei

论文摘要

激光射道是同时定位和映射的LIDAR的重要部分之一(SLAM)。但是,现有的LiDAR探光法倾向于将新的扫描与以前的固定置扫描相匹配,并逐渐累积了错误。此外,作为一种有效的关节优化机制,由于大规模全球地标的密集计算,捆绑捆绑调整(BA)不能直接引入实时探光仪。因此,这封信设计了一种新策略,称为LINDAR SLAM中的捆绑调整探光尺寸(LMBAO)的新策略,以解决这些问题。首先,通过主动地标维护策略进一步开发了基于BA的进程,以进行更准确的本地注册并避免累积错误。具体来说,本文将整个稳定的地标在地图上保存,而不仅仅是在滑动窗口中的特征点,并根据其主动等级删除地标。接下来,减小滑动窗口的长度,并执行边缘化以保留窗口外的扫描,但对应于地图上的活动地标,从而大大简化了计算并改善了实时属性。此外,在三个具有挑战性的数据集上进行的实验表明,我们的算法在户外驾驶中实现了实时性能,并且超过了最先进的激光雷达大满贯算法,包括乐高乐园和VLOM。

LiDAR odometry is one of the essential parts of LiDAR simultaneous localization and mapping (SLAM). However, existing LiDAR odometry tends to match a new scan simply iteratively with previous fixed-pose scans, gradually accumulating errors. Furthermore, as an effective joint optimization mechanism, bundle adjustment (BA) cannot be directly introduced into real-time odometry due to the intensive computation of large-scale global landmarks. Therefore, this letter designs a new strategy named a landmark map for bundle adjustment odometry (LMBAO) in LiDAR SLAM to solve these problems. First, BA-based odometry is further developed with an active landmark maintenance strategy for a more accurate local registration and avoiding cumulative errors. Specifically, this paper keeps entire stable landmarks on the map instead of just their feature points in the sliding window and deletes the landmarks according to their active grade. Next, the sliding window length is reduced, and marginalization is performed to retain the scans outside the window but corresponding to active landmarks on the map, greatly simplifying the computation and improving the real-time properties. In addition, experiments on three challenging datasets show that our algorithm achieves real-time performance in outdoor driving and outperforms state-of-the-art LiDAR SLAM algorithms, including Lego-LOAM and VLOM.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源