论文标题
天文时间序列的高斯过程回归
Gaussian Process regression for astronomical time-series
论文作者
论文摘要
在过去的二十年中,天文学的时间域数据集的可用性,大小和精度有了重大扩展。由于它们的灵活性,数学简单性和比较鲁棒性的独特组合,高斯流程(GPS)最近出现了作为对此类数据集中随机信号进行建模的选择解决方案。在这篇综述中,我们简要介绍了GP在天文学中的出现,提出了基本的数学理论,并考虑了GP回归涉及的关键建模选择的实用建议。然后,我们回顾了GP到迄今为止从系属物理文献中的时间域数据集的应用,从系外行星到活跃的银河核,展示了该方法的功率和灵活性。我们使用模拟数据提供了工作示例,并提供了指向源代码的链接,讨论计算成本和可扩展性的问题,并提供了开源GP软件包当前生态系统的快照。在进一步的算法和概念进步的推动下,我们希望全科医生将继续成为未来多年可靠和可解释的时域天文学的重要工具。
The last two decades have seen a major expansion in the availability, size, and precision of time-domain datasets in astronomy. Owing to their unique combination of flexibility, mathematical simplicity and comparative robustness, Gaussian Processes (GPs) have emerged recently as the solution of choice to model stochastic signals in such datasets. In this review we provide a brief introduction to the emergence of GPs in astronomy, present the underlying mathematical theory, and give practical advice considering the key modelling choices involved in GP regression. We then review applications of GPs to time-domain datasets in the astrophysical literature so far, from exoplanets to active galactic nuclei, showcasing the power and flexibility of the method. We provide worked examples using simulated data, with links to the source code, discuss the problem of computational cost and scalability, and give a snapshot of the current ecosystem of open source GP software packages. Driven by further algorithmic and conceptual advances, we expect that GPs will continue to be an important tool for robust and interpretable time domain astronomy for many years to come.