论文标题
borel在四分之一O(n)矢量模型中1/N扩展的总结性
Borel summability of the 1/N expansion in quartic O(N)-vector models
论文作者
论文摘要
我们考虑一个四分之一的O(n)矢量模型。使用循环顶点扩展,我们沿分区函数的真实轴和模型的连接相关性证明了Borel的总结性。只要后者属于复杂平面的域类似心脏,避免了负实际轴,就避免了耦合常数,borel的总结性在耦合常数中均匀地保持。
We consider a quartic O(N)-vector model. Using the Loop Vertex Expansion, we prove the Borel summability in 1/N along the real axis of the partition function and of the connected correlations of the model. The Borel summability holds uniformly in the coupling constant, as long as the latter belongs to a cardioid like domain of the complex plane, avoiding the negative real axis.