论文标题
对SPDE的最大解决方案的存在和独特性,并应用于粘性流体方程
Existence and Uniqueness of Maximal Solutions to SPDEs with Applications to Viscous Fluid Equations
论文作者
论文摘要
我们提出了两个标准,可以得出结论,随机部分微分方程(SPDE)具有独特的最大强溶液。本文提供了Arxiv:2202.09242V2中首先给出的抽象良好性结果的完整细节,并为纸质介绍了对3D盐的应用(通过Lie Transports的随机对流)在速度和涡旋形式中分别在圆锥形和边界域中以Navier-Stokes方程为方程。每个标准都有其相应的假设集,可以应用于具有添加剂,乘法或一般传输类型噪声的粘性流体方程。
We present two criteria to conclude that a stochastic partial differential equation (SPDE) posseses a unique maximal strong solution. This paper provides the full details of the abstract well-posedness results first given in arXiv:2202.09242v2, and partners a paper which rigorously addresses applications to the 3D SALT (Stochastic Advection by Lie Transport) Navier-Stokes Equation in velocity and vorticity form, on the torus and the bounded domain respectively. Each criterion has its corresponding set of assumptions and can be applied to viscous fluid equations with additive, multiplicative or a general transport type noise.