论文标题

多体aharonov-bohm笼子里的戒指格子

Many-body Aharonov-Bohm caging in a lattice of rings

论文作者

Nicolau, Eloi, Marques, Anselmo M., Dias, Ricardo G., Mompart, Jordi, Ahufinger, Verònica

论文摘要

我们研究了一个装有轨道角动量$ l = 1 $的一维交错环的系统,该系统装有轨道角动量$ l = 1 $。带有缠绕数字$+l $和$ -l $的本地特征态形成一个具有真实维度和合成尺寸的creutz梯子。相邻环中相反数字的状态通过复杂的隧道耦合,可以通过修改晶格的中央角度$ ϕ来调节。我们使用扰动理论分析了强烈相互作用制度的单粒子情况和少数玻色子结合状态子空间,显示了如何设计系统的几何形状,以通过plaquettes生成有效的$π$ -Flux。我们发现,即使在存在分散单粒子光谱的情况下,即使在$ n $ - 粒子子空间中,在$ n $ - 粒子子空间中都有非平凡的拓扑结构和多体aharonov-bohm笼子。此外,我们研究了以任意晶格周期性$γ$引入角度$ ϕ $的模型家族。对于$γ> 2 $,$π$ -Flux变为不均匀,随着光谱中平面频段的数量的增加,Aharonov-bohm笼子的空间范围扩大。通过精确的对角线化对所有分析结果进行基准测试。

We study a system of a few ultracold bosons loaded into the states with orbital angular momentum $l=1$ of a one-dimensional staggered lattice of rings. Local eigenstates with winding numbers $+l$ and $-l$ form a Creutz ladder with a real dimension and a synthetic one. States with opposite winding numbers in adjacent rings are coupled through complex tunnelings, which can be tuned by modifying the central angle $ϕ$ of the lattice. We analyze both the single-particle case and the few boson bound-state subspaces for the regime of strong interactions using perturbation theory, showing how the geometry of the system can be engineered to produce an effective $π$-flux through the plaquettes. We find non-trivial topological band structures and many-body Aharonov-Bohm caging in the $N$-particle subspaces even in the presence of a dispersive single-particle spectrum. Additionally, we study the family of models where the angle $ϕ$ is introduced at an arbitrary lattice periodicity $Γ$. For $Γ>2$, the $π$-flux becomes non-uniform, which enlarges the spatial extent of the Aharonov-Bohm caging as the number of flat bands in the spectrum increases. All the analytical results are benchmarked through exact diagonalization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源