论文标题

关于粘性不可压缩的流体中大量小刚体的运动

On the motion of a large number of small rigid bodies in a viscous incompressible fluid

论文作者

Feireisl, Eduard, Roy, Arnab, Zarnescu, Arghir

论文摘要

我们考虑$ n $刚体的运动 - 紧凑集$(\ Mathcal {s}^1_ \ Varepsilon,\ cdots,\ Mathcal {s}^n_ \ varepsilon)_ {\ varepsilon> 0} 在Euclidean Space $ \ Mathbb {r}^d $,$ d = 2,3 $中包含在域中的域中。 我们显示流体流不受渐近极限$ \ varepsilon \ to 0 $和$ n = n(\ varepsilon)\ rightarrow \ rightarrow \ rightarrow \ rightarrow \ infty $的影响不受无限多体的存在的影响。 立刻 \ [ {\ rm diam} [\ Mathcal {s}^i_ \ varepsilon] \至0 \ \ mbox {as} \ \ varepsilon \ to 0,\ i = 1,\ cdots,n(\ varepsilon)。 \] 结果仅取决于身体的几何形状,与它们的质量密度无关。允许使用有限的能量进行冲突,并且初始数据是任意的。

We consider the motion of $N$ rigid bodies -- compact sets $(\mathcal{S}^1_\varepsilon, \cdots, \mathcal{S}^N_\varepsilon )_{\varepsilon > 0}$ -- immersed in a viscous incompressible fluid contained in a domain in the Euclidean space $\mathbb{R}^d$, $d=2,3$. We show the fluid flow is not influenced by the presence of the infinitely many bodies in the asymptotic limit $\varepsilon \to 0$ and $N=N(\varepsilon)\rightarrow\infty$ as soon as \[ {\rm diam}[\mathcal{S}^i_\varepsilon ] \to 0 \ \mbox{as}\ \varepsilon \to 0 ,\ i=1,\cdots, N(\varepsilon). \] The result depends solely on the geometry of the bodies and is independent of their mass densities. Collisions are allowed and the initial data are arbitrary with finite energy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源