论文标题
特征值交叉作为放松动力学中的相变
Eigenvalue crossing as a phase transition in relaxation dynamics
论文作者
论文摘要
当系统的参数突然改变时,随后将对系统的新均衡进行放松。我们表明,弛豫矩阵的第二和第三特征值之间的穿越会导致弛豫轨迹奇异性,这类似于一阶平衡相变。我们在最小的4状态系统和1D ISING模型的热力学极限中证明了这一点。
When a system's parameter is abruptly changed, a relaxation towards the new equilibrium of the system follows. We show that a crossing between the second and third eigenvalues of the relaxation matrix results in a relaxation trajectory singularity, which is analogous to a first-order equilibrium phase transition. We demonstrate this in a minimal 4-state system and in the thermodynamic limit of the 1D Ising model.