论文标题
在$ \ mathbb z^d $ - 码计上与整数矩阵相关
On $\mathbb Z^d$-odometers associated to integer matrices
论文作者
论文摘要
我们扩展了T. Giordano,I。F. Putnam,C。F. Skau所包含的``$ \ Mathbb Z^d $ -Odometers and Sopometers and Sopometers and Coomogology'',Geom。Dyn。Dyn。13(2019),第3期,第3期,第909-938页,第909-938页,关于conjugacy,Isomorphism and Contancy或Contancy或Contaimer或Contairement和Contine of-Matherus of-nopbs of-nobbival of-quivalulous obb。尺寸$ d> 2 $。
We extend the results of T. Giordano, I. F. Putnam, C. F. Skau contained in ``$\mathbb Z^d$-odometers and cohomology", Groups Geom. Dyn. 13 (2019), no. 3, P. 909-938, on characterization of conjugacy, isomorphism, and continuous orbit equivalence of $\mathbb Z^d$-odometers to dimensions $d>2$. We then apply these extensions to the case of odometers defined by matrices with integer coefficients.