论文标题
Terahertz的稀土近距离旋转动力学
Terahertz spin dynamics in rare-earth orthoferrites
论文作者
论文摘要
最近,对开发快速自旋设备和激光控制磁性固体的兴趣引发了巨大的实验和理论努力,以理解和操纵材料中的超快动态。 Terahertz(THZ)频率范围内的自旋动力学的研究对于阐明微小途径的新设备功能尤其重要。在这里,我们回顾了与稀土直线甲烷中自旋动力学有关的THZ现象,这是一种有望用于抗铁磁旋转的材料。我们将此主题扩展为四个关键要素的描述。 (1)我们首先描述了旋转激发的THZ光谱,以探测热平衡中的磁相变。虽然声氧气是自旋重新定向跃迁的有用指标,但由动态磁电耦合引起的电磁体是低温下倒置对称阶段的签名。 (2)然后,我们回顾强烈的激光驱动方案,在该方案中,该系统远离平衡的兴奋,从而对自由能环境进行了修改。讨论了用于超快速激光操纵磁性的微观途径。 (3)此外,我们回顾了各种方案,以操纵时间和空间中的相干THZ磁蛋白,这是抗磁性旋转旋转器应用的有用功能。 (4)最后,提供了关于凝结物质中动态磁耦合与量子光学中的dicke超级相变之间的连接的新见解。通过对单一类材料中发生的一系列THZ自旋现象进行审查,我们希望触发跨学科的努力,这些跨学科努力积极寻求旋转型旋转的子场之间的联系,这将促进主动旋转控制和量子相工程的新方案的发明。
Recent interest in developing fast spintronic devices and laser-controllable magnetic solids has sparked tremendous experimental and theoretical efforts to understand and manipulate ultrafast dynamics in materials. Studies of spin dynamics in the terahertz (THz) frequency range are particularly important for elucidating microscopic pathways toward novel device functionalities. Here, we review THz phenomena related to spin dynamics in rare-earth orthoferrites, a class of materials promising for antiferromagnetic spintronics. We expand this topic into a description of four key elements. (1) We start by describing THz spectroscopy of spin excitations for probing magnetic phase transitions in thermal equilibrium. While acoustic magnons are useful indicators of spin reorientation transitions, electromagnons that arise from dynamic magnetoelectric couplings serve as a signature of inversion-symmetry-breaking phases at low temperatures. (2) We then review the strong laser driving scenario, where the system is excited far from equilibrium and thereby subject to modifications to the free energy landscape. Microscopic pathways for ultrafast laser manipulation of magnetic order are discussed. (3) Furthermore, we review a variety of protocols to manipulate coherent THz magnons in time and space, which are useful capabilities for antiferromagnetic spintronic applications. (4) Finally, new insights on the connection between dynamic magnetic coupling in condensed matter and the Dicke superradiant phase transition in quantum optics are provided. By presenting a review on an array of THz spin phenomena occurring in a single class of materials, we hope to trigger interdisciplinary efforts that actively seek connections between subfields of spintronics, which will facilitate the invention of new protocols of active spin control and quantum phase engineering.