论文标题

1D,2D和3D材料中晶格动力学的一般不变性和平衡条件

General invariance and equilibrium conditions for lattice dynamics in 1D, 2D, and 3D materials

论文作者

Lin, Changpeng, Poncé, Samuel, Marzari, Nicola

论文摘要

振动模式的长波长行为在载体传输,声子辅助的光学特性,超导性以及材料的热机械和热电特性中起着核心作用。在这里,我们提出了晶格电位的一般不变性和平衡条件。这些允许在低维材料中恢复弯曲声子的二次分散,与长波长弯曲模式的现象学模型一致。我们还证明,对于任何低维材料,弯曲模式可以在真空方向上具有纯粹的平面极化,而在长波长极限中可以具有二次散布。此外,我们提出了一种有效的方法,可以治疗具有不变的有效电荷的晶体中的不变性条件,其中远程偶极 - 偶极相互作用会导致对晶格潜力和应力张量的贡献。我们的方法成功地应用于158种二维材料的声子分散剂,突出了其在低维材料的语音介导特性的研究中的关键相关性。

The long-wavelength behavior of vibrational modes plays a central role in carrier transport, phonon-assisted optical properties, superconductivity, and thermomechanical and thermoelectric properties of materials. Here, we present general invariance and equilibrium conditions of the lattice potential; these allow to recover the quadratic dispersions of flexural phonons in low-dimensional materials, in agreement with the phenomenological model for long-wavelength bending modes. We also prove that for any low-dimensional material the bending modes can have a purely out-of-plane polarization in the vacuum direction and a quadratic dispersion in the long-wavelength limit. In addition, we propose an effective approach to treat invariance conditions in crystals with non-vanishing Born effective charges where the long-range dipole-dipole interactions induce a contribution to the lattice potential and stress tensor. Our approach is successfully applied to the phonon dispersions of 158 two-dimensional materials, highlighting its critical relevance in the study of phonon-mediated properties of low-dimensional materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源