论文标题

基于多层回归的可预测函数拟合网络

A Multi-Layer Regression based Predicable Function Fitting Network

论文作者

Wan, Changlin, Shi, Zhongzhi

论文摘要

功能在数学和许多科学分支中起着重要作用。随着计算机技术的快速开发,在这些年中,越来越多地研究了计算功能分析,例如快速傅立叶变换,小波变换,曲线函数。但是,在这些方法中有两个主要问题:1)难以处理固定和非平稳,周期性和非周期性和非周期性,高阶和低阶的复杂功能; 2)难以概括从训练数据到测试数据的拟合功能。在本文中,将解决两个主要问题的基于多回归的函数拟合网络作为可预测的函数拟合技术引入。该技术构建网络包括三个主要部分:1)固定变换层,2)特征编码层; 3)微调回归层。固定变换层识别输入功能数据的顺序,并将非平稳功能转换为固定函数。特征编码层将原始输入顺序数据编码为新的线性回归特征,该功能可以捕获顺序数据的结构和时间字符。然后,微调回归层将功能拟合到目标前值。带有线性回归的拟合网络具有特征层和非线性回归层,具有高质量的拟合结果和可推广的预测。数学函数示例和真实单词函数示例的实验验证了提出的技术的效率。

Function plays an important role in mathematics and many science branches. As the fast development of computer technology, more and more study on computational function analysis, e.g., Fast Fourier Transform, Wavelet Transform, Curve Function, are presented in these years. However, there are two main problems in these approaches: 1) hard to handle the complex functions of stationary and non-stationary, periodic and non-periodic, high order and low order; 2) hard to generalize the fitting functions from training data to test data. In this paper, a multiple regression based function fitting network that solves the two main problems is introduced as a predicable function fitting technique. This technique constructs the network includes three main parts: 1) the stationary transform layer, 2) the feature encoding layers, and 3) the fine tuning regression layer. The stationary transform layer recognizes the order of input function data, and transforms non-stationary function to stationary function. The feature encoding layers encode the raw input sequential data to a novel linear regression feature that can capture both the structural and the temporal characters of the sequential data. The fine tuning regression layer then fits the features to the target ahead values. The fitting network with the linear regression feature layers and a non-linear regression layer come up with high quality fitting results and generalizable predictions. The experiments of both mathematic function examples and the real word function examples verifies the efficiency of the proposed technique.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源