论文标题
基于连续的基因动力学的动态断裂
Dynamic fracture with continuum-kinematics-based peridynamics
论文作者
论文摘要
这项贡献给基于连续的基因动力学的动态断裂提出了一个概念。基于连续的基因模拟动力学是perideNanic的几何表述,它为经典的植物动力学键增加了基于表面或体积的相互作用,因此可以正确捕获有限的变形运动学。这些非本地相互作用所考虑的表面和体积是使用从材料点的地平线衍生而来的。 对于骨折,基于连续基因的Peridynemics中,经典的粘结损伤方法不足。考虑到材料点的内力密度损失的强度损失,在这里,它通过其他故障变量扩展到基于表面和体积的相互作用。通过数值示例,可以表明该方法可以正确处理裂纹的生长,撞击损害和在动态载荷条件下具有较大变形的自发裂纹启动。
This contribution presents a concept to dynamic fracture with continuum-kinematics-based peridynamics. Continuum-kinematics-based peridynamics is a geometrically exact formulation of peridynamics, which adds surface- or volumetric-based interactions to the classical peridynamic bonds, thus capturing the finite deformation kinematics correctly. The surfaces and volumes considered for these non-local interactions are constructed using the point families derived from the material points' horizon. For fracture, the classical bond-stretch damage approach is not sufficient in continuum-kinematics-based peridynamics. Here it is extended to the surface- and volume-based interactions by additional failure variables considering the loss of strength in the material points' internal force densities. By numerical examples, it is shown that the approach can correctly handle crack growth, impact damage, and spontaneous crack initiation under dynamic loading conditions with large deformations.