论文标题
修饰的对角线周期的食物组消失的结果
Vanishing results in Chow groups for the modified diagonal cycles
论文作者
论文摘要
我们证明,在Chow组中消失的对角线周期(具有$ \ MATHBB {q} $ - 系数)是曲线上$ \ mathbb {c} $的三重产品的足够条件。我们表现出无限的许多非hyperelliptic曲线,包括弗里克 - 马克斯曲线,带曲线和两个由某些Hurwitz空间参数化的一维家族,为此满足我们的状况。
We prove a sufficient condition for the vanishing of the modified diagonal cycle in the Chow group (with $\mathbb{Q}$-coefficients) of the triple product of a curve over $\mathbb{C}$. We exhibit infinitely many non-hyperelliptic curves, including the Fricke--Macbeath curve, the Bring curve, and two 1-dimensional families parameterized by certain Hurwitz spaces, for which our condition is satisfied.