论文标题
三嵌段共聚物膜中溶质扩散的多尺度建模
Multiscale modeling of solute diffusion in triblock copolymer membranes
论文作者
论文摘要
我们开发了通过多孔三嵌段共聚物膜扩散溶质的多尺度模拟模型。该方法结合了两种技术:自洽场理论(SCFT),以预测自组装,溶剂化的膜和务实动力学蒙特卡洛(KMC)模拟以建模溶质扩散的结构。通过限制玻璃膜基质,同时放松刷子状的膜孔涂层,通过限制玻璃膜基质来模拟溶剂。 KMC模拟捕获了所得的溶质空间分布和浓度依赖于聚合物涂层孔中的局部扩散率。我们使用基于粒子的模拟对后者进行参数化。我们采用我们的方法来通过模型三嵌段共聚物的非平衡形态模拟溶质扩散,并将扩散率与形态的结构描述相关。我们还将模型的预测与基于简单晶格随机步行的替代方法进行了比较,并发现我们的多尺度模型更加稳健和系统地进行参数化。我们的多尺度建模方法是一般的,将来很容易扩展到其他化学,形态和局部溶质扩散率和与膜相互作用的模型。
We develop a multiscale simulation model for diffusion of solutes through porous triblock copolymer membranes. The approach combines two techniques: self-consistent field theory (SCFT) to predict the structure of the self-assembled, solvated membrane and on-lattice kinetic Monte Carlo (kMC) simulations to model diffusion of solutes. Solvation is simulated in SCFT by constraining the glassy membrane matrix while relaxing the brush-like membrane pore coating against the solvent. The kMC simulations capture the resulting solute spatial distribution and concentration-dependent local diffusivity in the polymer-coated pores; we parameterize the latter using particle-based simulations. We apply our approach to simulate solute diffusion through nonequilibrium morphologies of a model triblock copolymer, and we correlate diffusivity with structural descriptors of the morphologies. We also compare the model's predictions to alternative approaches based on simple lattice random walks and find our multiscale model to be more robust and systematic to parameterize. Our multiscale modeling approach is general and can be readily extended in the future to other chemistries, morphologies, and models for the local solute diffusivity and interactions with the membrane.