论文标题
在无冲突的车辆路线中恢复可行性
Recovering feasibility in real-time conflict-free vehicle routing
论文作者
论文摘要
在制造,运输和物流设施中出现了无冲突的车辆路线问题(CF-VRP),在这些设施,运输和物流设施中,自动化导向车辆(AGV)用于移动负载。与\ textIt {车辆路由问题}在分配管理中产生的不同,CF-VRP明确考虑指南网络的弧线的有限能力,以避免车辆之间的碰撞。 AGV应用具有两个独特的功能。首先,影响旅行时间和机器现成时间的不确定性可能会导致车队名义计划的车辆延迟或预期。其次,相对较高的车辆速度(按每秒一两米的顺序)要求在很短的时间内修改车辆计划(通常很少毫秒),以避免碰撞。在本文中,我们提出了快速精确的算法,以实时恢复计划可行性。特别是,我们确定了可以实时实施的两个纠正措施,并将问题作为线性程序,旨在优化四种常见的性能指标(总车辆延迟,总加权延迟,最大路线持续时间和总延迟)。此外,我们开发了量身定制的算法,这些算法在随机生成的各种尺寸的实例上进行了测试,这比使用现成的求解器要快三个数量级。
Conflict-Free Vehicle Routing Problems (CF-VRPs) arise in manufacturing, transportation and logistics facilities where Automated Guided Vehicles (AGVs) are utilized to move loads. Unlike \textit{Vehicle Routing Problems} arising in distribution management, CF-VRPs explicitly consider the limited capacity of the arcs of the guide path network to avoid collisions among vehicles. AGV applications have two peculiar features. First, the uncertainty affecting both travel times and machine ready times may result in vehicle delays or anticipations with respect to the fleet nominal plan. Second, the relatively high vehicle speed (in the order of one or two meters per second) requires vehicle plans to be revised in a very short amount of time (usually few milliseconds) in order to avoid collisions. In this paper we present fast exact algorithms to recover plan feasibility in real-time. In particular, we identify two corrective actions that can be implemented in real-time and formulate the problem as a linear program with the aim to optimize four common performance measures (total vehicle delay, total weighted delay, maximum route duration and total lateness). Moreover, we develop tailored algorithms which, tested on randomly generated instances of various sizes, prove to be three orders of magnitude faster than using off-the-shelf solvers.