论文标题

不确定性意识到紧密耦合的GPS fused lio-slam

Uncertainty-Aware Tightly-Coupled GPS Fused LIO-SLAM

论文作者

Hossain, Sabir, Lin, Xianke

论文摘要

交付机器人旨在获得高精度以促进完整的自主权。需要一个精确的人行行周围环境的三维点云图来估计自我位置。有或没有循环结束方法,由于传感器漂移,较大的城市或城市地图映射后累积误差逐渐增加。因此,使用漂移或未对准的地图存在很高的风险。本文提出了一种融合GPS更新3D点云并消除累积错误的技术。提出的方法与其他现有方法显示了定量比较和定性评估的出色结果。

Delivery robots aim to achieve high precision to facilitate complete autonomy. A precise three-dimensional point cloud map of sidewalk surroundings is required to estimate self-location. With or without the loop closing method, the cumulative error increases gradually after mapping for larger urban or city maps due to sensor drift. Therefore, there is a high risk of using the drifted or misaligned map. This article presented a technique for fusing GPS to update the 3D point cloud and eliminate cumulative error. The proposed method shows outstanding results in quantitative comparison and qualitative evaluation with other existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源