论文标题

PEPE:使用用户生成的后编辑的个性化邮政编辑模型

PePe: Personalized Post-editing Model utilizing User-generated Post-edits

论文作者

Lee, Jihyeon, Kim, Taehee, Tae, Yunwon, Park, Cheonbok, Choo, Jaegul

论文摘要

合并个人喜好对于高级机器翻译任务至关重要。尽管机器翻译最近进步,但正确反映个人风格仍然是一项艰巨的任务。在本文中,我们引入了一个个性化的自动后编辑框架来应对这一挑战,该挑战有效地考虑了考虑不同的个人行为的句子。为了构建此框架,我们首先收集后编辑数据,该数据表示从实时机器翻译系统中的用户偏好。具体来说,现实世界的用户输入源句子进行翻译,并根据用户的首选样式编辑机器翻译的输出。然后,我们提出了一个模型,该模型结合了APE框架上的歧视器模块和特定于用户的参数。实验结果表明,该方法的表现优于四个不同指标(即BLEU,TER,YISI-1和人类评估)的其他基线模型。

Incorporating personal preference is crucial in advanced machine translation tasks. Despite the recent advancement of machine translation, it remains a demanding task to properly reflect personal style. In this paper, we introduce a personalized automatic post-editing framework to address this challenge, which effectively generates sentences considering distinct personal behaviors. To build this framework, we first collect post-editing data that connotes the user preference from a live machine translation system. Specifically, real-world users enter source sentences for translation and edit the machine-translated outputs according to the user's preferred style. We then propose a model that combines a discriminator module and user-specific parameters on the APE framework. Experimental results show that the proposed method outperforms other baseline models on four different metrics (i.e., BLEU, TER, YiSi-1, and human evaluation).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源