论文标题

某些单价功能子类的可变性区域

Region of variability for certain subclass of univalent functions

论文作者

Parlapalli, Jnana Preeti, Allu, Vasudevarao

论文摘要

令$ \ mathbb {d}:= \ {z \ in \ mathbb {c}:| z | <1 \} $为单位磁盘。对于$ 0 <α<1 $,让$f_α(z)= z/(1-z^α)$ for \ z \ in \ mathbb {d} $。我们考虑分析函数的类$ \ Mathcal {f} $ $f_α$满足$ \ re \ left(1+zf“_α(z)/f'_α(z)/f'_α(z)\ right)>β$ for $ 0 <β<1 $。当$ f $时,\ mathbb {d} $在类别$ {\ Mathcal f}(λ)上有所不同,= \ {f_α\ in \ Mathcal {f}:f_α(0)= 0,f'_α(f'_α(0)= 1 \ mbox {for} \,\,0 \leqλ\ leq 1 \} $。

Let $\mathbb{D}:=\{z\in \mathbb{C}: |z|<1\}$ be the unit disk. For $0<α<1$, let $f_α(z)=z/(1-z^α)$ for $z \in \mathbb{D}$. We consider the class $\mathcal{F}$ of analytic functions $f_α$ which satisfy $\Re \left(1+zf"_α(z)/f'_α(z)\right) > β$ for $0<β<1$. In this paper, we determine the region of variability of $\log f'_α(z_0)$ for fixed $z_{0} \in \mathbb{D}$ when $f$ varies over the class ${\mathcal F}(λ):=\{f_α \in \mathcal{F}: f_α(0)=0, f'_α(0)=1 \, \mbox{and} \, f"_α(0)=2λ(1-β) \,\,\, \mbox{for} \,\, 0\leq λ\leq 1\}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源