论文标题
某些类别和单价功能的支持点
Support points of some classes of analytic and univalent functions
论文作者
论文摘要
令$ \ mathcal {a} $表示单位磁盘$ \ mathbb {d}中的分析函数类:= \ {z \ in \ mathbb {c}:| | z | | <1 \} $满足$ f(0)= 0 $ f(0)= 0 $ and $ f'(0)= 0 $和$ f'(0)= 1 $。令$ \ MATHCAL {U} $为\ MATHCAL {a} $满足$ f \ in \ mathcal {a} $满足$ f \的类别类别$ \ mathscr {g} $表示功能类$ f \ in \ mathcal {a} $满足$$ {\ rm re \,} \ left(1+\ frac {zf''(zf''(z)} z \ in \ mathbb {d}。$$
Let $\mathcal{A}$ denote the class of analytic functions in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}$ satisfying $f(0)=0$ and $f'(0)=1$. Let $\mathcal{U}$ be the class of functions $f\in\mathcal{A}$ satisfying $$\left|f'(z)\left(\frac{z}{f(z)}\right)^2-1 \right|< 1 \quad\mbox{ for } z\in\mathbb{D},$$ and $\mathscr{G}$ denote the class of functions $f\in \mathcal{A}$ satisfying $${\rm Re\,}\left(1+\frac{zf''(z)}{f'(z)}\right)>-\frac{1}{2} \quad\mbox{ for } z\in\mathbb{D}.$$