论文标题
在最大诱导的匹配数量上
On the Maximum Induced Matching Number of a Stacked-book graph
论文作者
论文摘要
假设G是一个简单的无向图。 G中的诱导匹配是G的边缘集E(g)中的一组边M,使得E1中的E1,E2中没有E1和E2的端点V1,E2的V1,E(G)中的任何边缘E的任何边缘EK都出现在E(G)中,以使E的任何边缘在M.表示M.表示IM(G)的最大概率的M.中的任何EDGE中,该概率为G。 GM,N,这是由Star Graph SM和Path PN的笛卡尔产物获得的堆叠书图。
Suppose that G is a simple, undirected graph. An induced matching in G is a set of edges M in the edge set E(G) of G such that if e1, e2 in M, then no endpoint v1, v2 of e1 and e2 respectively is incident to any edge ek in E(G) such that ek is incident to any edge in M. Denoted by im(G), the maximum cardinal number of M is known as the induced matching number of G. In this work, we probe im(G) where G = Gm,n, which is the stacked-book graph obtained by the Cartesian product of the star graph Sm and path Pn.