论文标题

结构引导的歧管发现疾病特征

Structure Guided Manifolds for Discovery of Disease Characteristics

论文作者

Liu, Siyu, Liu, Linfeng, Vinh, Xuan, Crozier, Stuart, Engstrom, Craig, Nasrallah, Fatima, Chandra, Shekhar

论文摘要

在医学图像分析中,许多疾病的微妙视觉特征要具有挑战性,特别是由于缺乏配对数据。例如,在轻度阿尔茨海默氏病(AD)中,脑组织萎缩可能很难从纯成像数据中观察到,尤其是没有配对的AD和认知正常(CN)数据以进行比较。这项工作提出了疾病发现甘(Dicigan),这是一个基于弱的基于风格的框架,可发现和可视化微妙的疾病特征。 Didigan了解了AD和CN视觉特征的疾病歧管,并且从该歧管中采样的样式代码将其施加到综合配对AD和CN磁共振图像(MRIS)的解剖结构“蓝图”上。为了抑制生成的AD和CN对之间的非疾病相关变化,Didigan利用具有循环一致性和抗偏置的结构约束来实施解剖对应关系。当对阿尔茨海默氏病神经影像学计划(ADNI)数据集进行测试时,Didigan通过合成的配对AD和CN扫描显示了关键的AD特征(减少海马体积,心室增大和皮质结构的萎缩)。定性结果通过自动化的大脑体积分析来支持,其中还测量了脑组织结构的系统成对降低

In medical image analysis, the subtle visual characteristics of many diseases are challenging to discern, particularly due to the lack of paired data. For example, in mild Alzheimer's Disease (AD), brain tissue atrophy can be difficult to observe from pure imaging data, especially without paired AD and Cognitively Normal ( CN ) data for comparison. This work presents Disease Discovery GAN ( DiDiGAN), a weakly-supervised style-based framework for discovering and visualising subtle disease features. DiDiGAN learns a disease manifold of AD and CN visual characteristics, and the style codes sampled from this manifold are imposed onto an anatomical structural "blueprint" to synthesise paired AD and CN magnetic resonance images (MRIs). To suppress non-disease-related variations between the generated AD and CN pairs, DiDiGAN leverages a structural constraint with cycle consistency and anti-aliasing to enforce anatomical correspondence. When tested on the Alzheimer's Disease Neuroimaging Initiative ( ADNI) dataset, DiDiGAN showed key AD characteristics (reduced hippocampal volume, ventricular enlargement, and atrophy of cortical structures) through synthesising paired AD and CN scans. The qualitative results were backed up by automated brain volume analysis, where systematic pair-wise reductions in brain tissue structures were also measured

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源