论文标题

使用MRI图像和深神经网络对阿尔茨海默氏病的自动检测 - 综述

Automated detection of Alzheimer disease using MRI images and deep neural networks- A review

论文作者

Singh, Narotam, D, Patteshwari., Soni, Neha, Kapoor, Amita

论文摘要

早期发现阿尔茨海默氏病对于部署干预措施和减慢疾病进展至关重要。在过去的十年中,已经探索了许多机器学习和深度学习算法,目的是为阿尔茨海默氏症建立自动检测。数据增强技术和先进的深度学习体系结构的进步开辟了该领域的新边界,研究正在快速发展。因此,这项调查的目的是概述有关阿尔茨海默氏病诊断深度学习模型的最新研究。除了分类众多数据源,神经网络架构以及常用的评估措施外,我们还对实施和可重复性进行了分类。我们的目标是协助有兴趣的研究人员跟上最新的发展,并将早期的调查作为基准。此外,我们还指出了该主题的未来研究方向。

Early detection of Alzheimer disease is crucial for deploying interventions and slowing the disease progression. A lot of machine learning and deep learning algorithms have been explored in the past decade with the aim of building an automated detection for Alzheimer. Advancements in data augmentation techniques and advanced deep learning architectures have opened up new frontiers in this field, and research is moving at a rapid speed. Hence, the purpose of this survey is to provide an overview of recent research on deep learning models for Alzheimer disease diagnosis. In addition to categorizing the numerous data sources, neural network architectures, and commonly used assessment measures, we also classify implementation and reproducibility. Our objective is to assist interested researchers in keeping up with the newest developments and in reproducing earlier investigations as benchmarks. In addition, we also indicate future research directions for this topic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源