论文标题
5G基站的机器学习和分析功耗模型
Machine Learning and Analytical Power Consumption Models for 5G Base Stations
论文作者
论文摘要
移动网络第五代(5G)的能源消耗是电信行业的主要关注点之一。但是,目前没有一种评估5G基站(BSS)功耗的准确且可进行的方法。在本文中,我们提出了一个新颖的模型,以实现5G多载波BSS功耗的现实表征,该模型以大型数据收集活动为基础。首先,我们定义了允许对多个5G BS产品进行建模的机器学习体系结构。然后,我们利用该框架收集的知识来得出一个现实且可分析的功耗模型,该模型可以帮助推动理论分析以及功能标准化,开发和优化框架。值得注意的是,我们证明了这种模型具有很高的精度,并且能够捕获节能机制的好处。我们认为,该分析模型代表了一种理解5G BSS功耗的基本工具,并准确优化了网络能源效率。
The energy consumption of the fifth generation(5G) of mobile networks is one of the major concerns of the telecom industry. However, there is not currently an accurate and tractable approach to evaluate 5G base stations (BSs) power consumption. In this article, we propose a novel model for a realistic characterisation of the power consumption of 5G multi-carrier BSs, which builds on a large data collection campaign. At first, we define a machine learning architecture that allows modelling multiple 5G BS products. Then, we exploit the knowledge gathered by this framework to derive a realistic and analytically tractable power consumption model, which can help driving both theoretical analyses as well as feature standardisation, development and optimisation frameworks. Notably, we demonstrate that such model has high precision, and it is able of capturing the benefits of energy saving mechanisms. We believe this analytical model represents a fundamental tool for understanding 5G BSs power consumption, and accurately optimising the network energy efficiency.