论文标题
紧凑复合歧管邻域的结构定理
A structure theorem for neighborhoods of compact complex manifolds
论文作者
论文摘要
我们构建了一张注入性地图,从一组全体形状等效类别的社区类别的$ m $ $ m $ $ m $ c $ c $ c $ c $ {\ mathbb c}^m $中的某些$ m <\ iffty $当$(tm)| _c $是固定的,而$ m $ c $ in $ m $ $ m $是$ m $ bugally offical offty $ c $ cungly of progally offy of $ $ cuns of progally或$ 2 $ $ 2 $ $ 2 $ -2 ppossive。
We construct an injective map from the set of holomorphic equivalence classes of neighborhoods $M$ of a compact complex manifold $C$ into ${\mathbb C}^m$ for some $m<\infty$ when $(TM)|_C$ is fixed and the normal bundle of $C$ in $M$ is either weakly negative or $2$-positive.