论文标题
通过广义von Mangoldt功能的Riemann假设
The Riemann Hypothesis via the generalized von Mangoldt Function
论文作者
论文摘要
杰克,格雷厄姆和李最近表明,可以根据von mangoldt函数$λ$的某些扭曲总和的某些渐近估计值来重新制定Riemann假设(RH)。在他们的想法的基础上,对于\ mathbb {n} $中的每个$ k \,我们都会研究\ emph {peneralized von mangoldt函数} $$λ_k(n):= \ sum_ {d \,\ sum_ {d \,\ mid \ mid \,n}μ(n}μ(d)与RH的类似连接。例如,对于$ k = 2 $,我们表明rh等同于这样的断言,即对于任何固定的$ε> 0 $,估计$$ \ sum_ {n \ leq x}λ_2(n)n^{ - iy} = \ frac = \ frac {2x^{2x^{1-iy} {1- iy} {1- \ log x-c_______________________________________( - \ frac {2x^{1-iy}}} {(1-iy)^2} +o \ big(x^{1/2}(x +| y |)^ε\ big)$ big)$ big)$均均匀地保持着所有$ x,y \ in \ x,y \ in \ mathbb {r} $ x $ x $ x \ geq 2 $ geq 2 $;因此,RH的有效性受整数中几乎普遍的分布所支配。我们获得了功能的相似结果$$λ^k:= \ mathop {\ usterbrace {\,λ\ star \ cdots \ cdots \starλ\,}} \ limits_ {k \ text {〜copies}}}} \ ,, $ k $ -k $ -fold卷积的Von mangoldt函数。
Gonek, Graham, and Lee have shown recently that the Riemann Hypothesis (RH) can be reformulated in terms of certain asymptotic estimates for twisted sums with von Mangoldt function $Λ$. Building on their ideas, for each $k\in\mathbb{N}$, we study twisted sums with the \emph{generalized von Mangoldt function} $$ Λ_k(n):=\sum_{d\,\mid\,n}μ(d)\Big(\log\frac{n}{d}\,\Big)^k $$ and establish similar connections with RH. For example, for $k=2$ we show that RH is equivalent to the assertion that, for any fixed $ε>0$, the estimate $$ \sum_{n\leq x}Λ_2(n)n^{-iy} =\frac{2x^{1-iy}(\log x-C_0)}{(1-iy)} -\frac{2x^{1-iy}}{(1-iy)^2} +O\big(x^{1/2}(x+|y|)^ε\big) $$ holds uniformly for all $x,y\in\mathbb{R}$, $x\geq 2$; hence, the validity of RH is governed by the distribution of almost-primes in the integers. We obtain similar results for the function $$ Λ^k:=\mathop{\underbrace{\,Λ\star\cdots\starΛ\,}}\limits_{k\text{~copies}}\,, $$ the $k$-fold convolution of the von Mangoldt function.