论文标题

秘密学习和归纳负责人

In-context Learning and Induction Heads

论文作者

Olsson, Catherine, Elhage, Nelson, Nanda, Neel, Joseph, Nicholas, DasSarma, Nova, Henighan, Tom, Mann, Ben, Askell, Amanda, Bai, Yuntao, Chen, Anna, Conerly, Tom, Drain, Dawn, Ganguli, Deep, Hatfield-Dodds, Zac, Hernandez, Danny, Johnston, Scott, Jones, Andy, Kernion, Jackson, Lovitt, Liane, Ndousse, Kamal, Amodei, Dario, Brown, Tom, Clark, Jack, Kaplan, Jared, McCandlish, Sam, Olah, Chris

论文摘要

“感应头”是注意力头,它实现了一种简单的算法来完成令牌序列,例如[a] [b] ... [a] - > [b]。在这项工作中,我们提供了一个假设的初步和间接证据,即诱导头可能构成大型变压器模型中所有“文本学习”中大多数的机制(即减少在增加代币指数时损失的损失)。我们发现,诱导头与在训练损失的颠簸中可见的敏锐学习能力的突然急剧增加相同。我们提出了六种互补的证据,认为诱导头可能是任何大小的变压器模型中一般性内部学习的机理来源。对于仅关注的小型模型,我们提供了有力的因果证据。对于具有MLP的较大模型,我们提供相关证据。

"Induction heads" are attention heads that implement a simple algorithm to complete token sequences like [A][B] ... [A] -> [B]. In this work, we present preliminary and indirect evidence for a hypothesis that induction heads might constitute the mechanism for the majority of all "in-context learning" in large transformer models (i.e. decreasing loss at increasing token indices). We find that induction heads develop at precisely the same point as a sudden sharp increase in in-context learning ability, visible as a bump in the training loss. We present six complementary lines of evidence, arguing that induction heads may be the mechanistic source of general in-context learning in transformer models of any size. For small attention-only models, we present strong, causal evidence; for larger models with MLPs, we present correlational evidence.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源