论文标题
NNU-NET应用于CT图像上肺部病变的自动分割,并影响放射线模型
Application of the nnU-Net for automatic segmentation of lung lesion on CT images, and implication on radiomic models
论文作者
论文摘要
病变分割是放射线工作流程的关键步骤。手动细分需要长时间的执行时间,并且容易变化,从而损害了放射线研究及其鲁棒性的实现。在这项研究中,对非小细胞肺癌患者的计算机断层扫描图像进行了深入学习的自动分割方法。还评估了手动与自动分割在生存放射模型的性能中的使用。方法总共包括899名NSCLC患者(2个专有:A和B,1个公共数据集:C)。肺部病变的自动分割是通过训练先前开发的建筑NNU-NET进行的,包括2D,3D和级联方法。以骰子系数评估自动分割的质量,以手动轮廓为参考。通过从数据集A的手动和自动轮廓中提取放射性的手工制作的和深度学习的特征,并为不同的机器学习算法提取放射性的手工制作和深度学习特征,从而探索了自动分割对患者生存的放射素模型对患者生存的性能的影响,从而探索了自动分割模型。评估并比较模型的精度。结果,通过平均2D和3D模型的预测以及应用后处理技术来提取最大连接的组件,可以实现具有骰子= 0.78 +(0.12)的自动和手动轮廓之间的最佳一致性。当使用手动或自动轮廓,手工制作或深层特征时,在生存模型的表现中未观察到统计差异。最好的分类器显示出0.65至0.78之间的精度。结论NNU-NET在自动分割肺部病变中的有希望的作用已被确认,从而大大降低了耗时的医生的工作量,而不会损害基于放射线学的生存预测模型的准确性。
Lesion segmentation is a crucial step of the radiomic workflow. Manual segmentation requires long execution time and is prone to variability, impairing the realisation of radiomic studies and their robustness. In this study, a deep-learning automatic segmentation method was applied on computed tomography images of non-small-cell lung cancer patients. The use of manual vs automatic segmentation in the performance of survival radiomic models was assessed, as well. METHODS A total of 899 NSCLC patients were included (2 proprietary: A and B, 1 public datasets: C). Automatic segmentation of lung lesions was performed by training a previously developed architecture, the nnU-Net, including 2D, 3D and cascade approaches. The quality of automatic segmentation was evaluated with DICE coefficient, considering manual contours as reference. The impact of automatic segmentation on the performance of a radiomic model for patient survival was explored by extracting radiomic hand-crafted and deep-learning features from manual and automatic contours of dataset A, and feeding different machine learning algorithms to classify survival above/below median. Models' accuracies were assessed and compared. RESULTS The best agreement between automatic and manual contours with DICE=0.78 +(0.12) was achieved by averaging predictions from 2D and 3D models, and applying a post-processing technique to extract the maximum connected component. No statistical differences were observed in the performances of survival models when using manual or automatic contours, hand-crafted, or deep features. The best classifier showed an accuracy between 0.65 and 0.78. CONCLUSION The promising role of nnU-Net for automatic segmentation of lung lesions was confirmed, dramatically reducing the time-consuming physicians' workload without impairing the accuracy of survival predictive models based on radiomics.