论文标题

通过联合步骤细分和关键动作得分手手动卫生评估

Hand Hygiene Assessment via Joint Step Segmentation and Key Action Scorer

论文作者

Li, Chenglong, Zhu, Qiwen, Liu, Tubiao, Tang, Jin, Su, Yu

论文摘要

手卫生是世界卫生组织(WHO)提出的标准六步洗手行动。但是,没有一个好方法来监督医务人员进行手卫生,这带来了疾病传播的潜在风险。现有的行动评估工作通常在整个视频中做出整体质量预测。但是,手动卫生作用的内部结构在手工卫生评估中很重要。因此,我们提出了一个新型的细粒学习框架,以联合方式进行步骤分割和关键动作得分手,以进行准确的手卫生评估。现有的时间分割方法通常采用多阶段卷积网络来改善分割鲁棒性,但由于缺乏远距离依赖性,因此很容易导致过度分割。为了解决此问题,我们设计了一个多阶段卷积转换器网络,以进行步骤细分。基于观察到每个手洗步骤都涉及确定手洗质量的几个关键动作,我们设计了一组关键的动作得分手,以评估每个步骤中关键动作的质量。此外,在手工卫生评估中缺乏统一的数据集。因此,在医务人员的监督下,我们贡献了一个视频数据集,其中包含300个带有细粒注释的视频序列。数据集上的广泛实验表明,我们的方法很好地评估了手动卫生视频并取得了出色的性能。

Hand hygiene is a standard six-step hand-washing action proposed by the World Health Organization (WHO). However, there is no good way to supervise medical staff to do hand hygiene, which brings the potential risk of disease spread. Existing action assessment works usually make an overall quality prediction on an entire video. However, the internal structures of hand hygiene action are important in hand hygiene assessment. Therefore, we propose a novel fine-grained learning framework to perform step segmentation and key action scorer in a joint manner for accurate hand hygiene assessment. Existing temporal segmentation methods usually employ multi-stage convolutional network to improve the segmentation robustness, but easily lead to over-segmentation due to the lack of the long-range dependence. To address this issue, we design a multi-stage convolution-transformer network for step segmentation. Based on the observation that each hand-washing step involves several key actions which determine the hand-washing quality, we design a set of key action scorers to evaluate the quality of key actions in each step. In addition, there lacks a unified dataset in hand hygiene assessment. Therefore, under the supervision of medical staff, we contribute a video dataset that contains 300 video sequences with fine-grained annotations. Extensive experiments on the dataset suggest that our method well assesses hand hygiene videos and achieves outstanding performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源