论文标题

关节和单个组件回归

Joint and Individual Component Regression

论文作者

Wang, Peiyao, Wang, Haodong, Li, Quefeng, Shen, Dinggang, Liu, Yufeng

论文摘要

多组数据通常在实践中看到。这种数据结构由来自多个组的数据组成,由于数据异质性,可能会具有挑战性。我们提出了一种新型的关节和单个组件回归(JICO)模型来分析多组数据。特别是,我们提出的模型将响应分解为共享和群体特异性组件,这些组件分别由预测因子的关节和单个结构的低级别驱动。关节结构在多组之间具有相同的回归系数,而单个结构具有特异性回归系数。此外,全球和个人等级的选择允许我们的模型涵盖全球和特定于小组的模型作为特殊情况。为了进行模型估计,我们在潜在组件的表示下制定了该框架,并提出了一种迭代算法,以解决新表示下的关节和个人分数。为了构建潜在分数,我们利用连续回归(CR),该回归提供了一个统一的框架,该框架涵盖了普通的最小二乘(OLS),部分最小二乘(PLS)和主要成分回归(PCR)作为特殊情况。我们表明JICO在全球模型和特定组模型之间达到了良好的平衡,并且由于CR的使用而保持灵活性。最后,我们对阿尔茨海默氏病数据集进行了模拟研究和分析,以进一步证明JICO的有效性。 r的JICO实施可在https://github.com/peiyaow/jico在线获得。

Multi-group data are commonly seen in practice. Such data structure consists of data from multiple groups and can be challenging to analyze due to data heterogeneity. We propose a novel Joint and Individual Component Regression (JICO) model to analyze multi-group data. In particular, our proposed model decomposes the response into shared and group-specific components, which are driven by low-rank approximations of joint and individual structures from the predictors respectively. The joint structure has the same regression coefficients across multiple groups, whereas individual structures have group-specific regression coefficients. Moreover, the choice of global and individual ranks allows our model to cover global and group-specific models as special cases. For model estimation, we formulate this framework under the representation of latent components and propose an iterative algorithm to solve for the joint and individual scores under the new representation. To construct the latent scores, we utilize the Continuum Regression (CR), which provides a unified framework that covers the Ordinary Least Squares (OLS), the Partial Least Squares (PLS), and the Principal Component Regression (PCR) as its special cases. We show that JICO attains a good balance between global and group-specific models and remains flexible due to the usage of CR. Finally, we conduct simulation studies and analysis of an Alzheimer's disease dataset to further demonstrate the effectiveness of JICO. R implementation of JICO is available online at https://github.com/peiyaow/JICO.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源