论文标题

$ \ infty $ - 类别

A monoidal Grothendieck construction for $\infty$-categories

论文作者

Ramzi, Maxime

论文摘要

我们构建了Lurie联合国/拉直等价的单一版本。更详细地,对于任何对称的单体$ \ infty $-类$ \ mathbf c $,我们赋予了$ \ infty $ - 在$ \ mathbf c $上的$ \ infty $ - 具有(自然定义的)符号单体结构,并证明它是$ $ y $ $ cy $ - C $至$ \ Mathbf {Cat} _ \ infty $。 实际上,我们通过对此陈述进行分类,从任何$ \ infty $ - operad上做到这一点,从而证明了对函子的更强有力的陈述,该函数分配给了$ \ infty $ -Category $ \ mathbf c $它的cocartesian纤维类别,其一方面是$ \ m athbf cat cat Inftty $ nftty $ formant ost $ \ mathbf forment of $ \ mathbf {_________________________________ nhand of the the the \ in thefty infty y Inf the the the thefty。

We construct a monoidal version of Lurie's un/straightening equivalence. In more detail, for any symmetric monoidal $\infty$-category $\mathbf C$, we endow the $\infty$-category of coCartesian fibrations over $\mathbf C$ with a (naturally defined) symmetric monoidal structure, and prove that it is equivalent the Day convolution monoidal structure on the $\infty$-category of functors from $\mathbf C$ to $\mathbf{Cat}_\infty$. In fact, we do this over any $\infty$-operad by categorifying this statement and thereby proving a stronger statement about the functors that assign to an $\infty$-category $\mathbf C$ its category of coCartesian fibrations on the one hand, and its category of functors to $\mathbf{Cat}_\infty$ on the other hand.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源