论文标题

通过约束处理的锂离子电池快速充电的数据启用数据的预测控制

Data-Enabled Predictive Control for Fast Charging of Lithium-Ion Batteries with Constraint Handling

论文作者

Zhang, Kaixiang, Chen, Kaian, Lin, Xinfan, Zheng, Yusheng, Yin, Xunyun, Hu, Xiaosong, Song, Ziyou, Li, Zhaojian

论文摘要

锂离子电池的快速充电已经获得了广泛的研究兴趣,但是大多数现有方法要么基于简单的基于规则的充电配置文件,要么需要明确的电池模型,而这些电池模型是非平凡的才能准确识别的。在本文中,我们没有依靠代价和校准的昂贵的参数电池模型,而是采用了一种新型的支持数据的预测性控制(DEEPC)范式来对锂离子电池执行安全,最佳的快速充电。开发的DEEDC方法基于行为系统理论,并直接利用电池系统的投入输出测量来预测未来的轨迹并计算最佳控制策略。 DEEDC配方中纳入了输入电流和电池状态的限制,以确保通过安全操作快速充电。此外,我们提出了一种基于主要组件分析的方案,以降低DEEPC算法中优化变量的维度,从而显着提高了计算效率而不会损害充电性能。在高保真电池模拟器上进行数值模拟,以验证提出的快速充电策略的功效。

Fast charging of lithium-ion batteries has gained extensive research interests, but most of existing methods are either based on simple rule-based charging profiles or require explicit battery models that are non-trivial to identify accurately. In this paper, instead of relying on parametric battery models that are costly to derive and calibrate, we employ a novel data-enabled predictive control (DeePC) paradigm to perform safe and optimal fast charging for lithium-ion batteries. The developed DeePC methodology is based on behavioral system theory and directly utilizes the input-output measurements from the battery system to predict the future trajectory and compute the optimal control policy. Constraints on input current and battery states are incorporated in the DeePC formulation to ensure battery fast charging with safe operations. Furthermore, we propose a principal component analysis based scheme to reduce the dimension of the optimization variables in the DeePC algorithm, which significantly enhances the computation efficiency without compromising the charging performance. Numerical simulations are performed on a high-fidelity battery simulator to validate the efficacy of the proposed fast charging strategy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源