论文标题

部分可观测时空混沌系统的无模型预测

Predicting Protein-Ligand Binding Affinity via Joint Global-Local Interaction Modeling

论文作者

Zhang, Yang, Zhou, Gengmo, Wei, Zhewei, Xu, Hongteng

论文摘要

蛋白质结合亲和力的预测对于发现药物研究中的铅化合物具有重要意义。面对这项具有挑战性的任务,大多数现有的预测方法都依赖于分子的拓扑和/或空间结构以及局部相互作用,同时忽略了蛋白质与配体之间的多级分子间相互作用,这通常会导致次优性能。为了解决这个问题,我们提出了一种新型的全球 - 本地相互作用(GLI)框架,以预测蛋白质 - 配体结合亲和力。特别是,我们的GLI框架考虑了蛋白质与配体之间的分子间相互作用,这不仅涉及封闭原子之间的高能量短距离相互作用,而且还涉及非原子之间的低能量长距离相互作用。对于每对蛋白质和配体,我们的GLI在全球范围内嵌入了远距离相互作用,并分别聚集了局部短距离相互作用。这种联合的全球 - 本地交互建模策略有助于提高预测准确性,并且整个框架与各种基于神经网络的模块兼容。实验表明,我们的GLI框架的表现优于简单神经网络架构和中等计算成本的最先进方法。

The prediction of protein-ligand binding affinity is of great significance for discovering lead compounds in drug research. Facing this challenging task, most existing prediction methods rely on the topological and/or spatial structure of molecules and the local interactions while ignoring the multi-level inter-molecular interactions between proteins and ligands, which often lead to sub-optimal performance. To solve this issue, we propose a novel global-local interaction (GLI) framework to predict protein-ligand binding affinity. In particular, our GLI framework considers the inter-molecular interactions between proteins and ligands, which involve not only the high-energy short-range interactions between closed atoms but also the low-energy long-range interactions between non-bonded atoms. For each pair of protein and ligand, our GLI embeds the long-range interactions globally and aggregates local short-range interactions, respectively. Such a joint global-local interaction modeling strategy helps to improve prediction accuracy, and the whole framework is compatible with various neural network-based modules. Experiments demonstrate that our GLI framework outperforms state-of-the-art methods with simple neural network architectures and moderate computational costs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源