论文标题
无磁场独立的自旋交换无弛豫磁力计
Magnetic-field-independent spin-exchange relaxation-free magnetometer
论文作者
论文摘要
基于碱金属旋转的致密团的农奴磁力计是精确的量子传感器,在$μ\ textrm {g} - \ textrm {mg} $范围内保持对磁场的测量和投影敏感性的记录。然而,在地磁磁场上,由于随机自旋交换碰撞,这些传感器由于旋转的偏斜性而迅速失去了磁灵敏度。在这里,我们发现,具有核自旋$ i = 1/2 $的原子即使在高磁场上也可以在自旋交换松弛(SELF)方向上运行。我们违反直觉表明,与另一个可访问的旋转气($ i> 1/2 $)之间的密度和光学不可接近$(i = 1/2)之间的频繁碰撞改善了后者的基本磁敏感性。我们分析了双种钾和原子氢磁力计的性能,并投射出约10美元的敏感性,\ sqrt {\ sqrt {\ mathrm {cm {cm}^3/\ mathrm {hz}} $在GEOMAGNETIC FIELSS的情况下,
SERF magnetometers based on dense ensembles of alkali-metal spins are precision quantum sensors that hold the record of measured and projected sensitivity to magnetic fields, in the $μ\textrm{G}-\textrm{mG}$ range. At geomagnetic fields however, these sensors quickly lose their magnetic sensitivity due to spin decoherence by random spin-exchange collisions. Here we discover that atoms with nuclear spin $I=1/2$ can operate in the Spin-Exchange Relaxation Free (SERF) regime even at high magnetic field. We counter-intuitively show that frequent collisions between a dense and optically-inaccessible $(I=1/2)$ gas with another optically-accessible spin gas ($I>1/2$) improve the fundamental magnetic sensitivity of the latter. We analyze the performance of a dual-specie potassium and atomic hydrogen magnetometer, and project a fundamental sensitivity of about $10\,\mathrm{aT}\sqrt{\mathrm{cm}^3/\mathrm{Hz}}$ at geomagnetic fields for feasible experimental conditions.