论文标题
通过低级别的奇异矢量近似地球学的Gramian矩阵近似近似值的有效图像
Efficient Image Denoising by Low-Rank Singular Vector Approximations of Geodesics' Gramian Matrix
论文作者
论文摘要
随着复杂相机的出现,捕捉高质量图像的冲动变得越来越大。但是,图像的噪音污染导致人们之间的期望不合标准。因此,图像denoising是必不可少的预处理步骤。尽管代数图像处理框架有时对这项降级任务有时效率低下,因为它们可能需要处理等同于原始图像的某些功能的订单矩阵,但神经网络图像处理框架有时并不强大,因为它们需要许多类似的训练样本。因此,在这里,我们提出了一种基于多种噪声滤波方法,该方法主要利用Geodesics Gramian矩阵的一些突出的奇异向量。尤其是,框架将图像划分为$ n \ times n $的图像,为$ n^2 $已知大小的重叠补丁,以使每个像素都以一个补丁为中心。然后,使用在贴片空间上计算的大小$ n^2 \ times n^2 $的Gramian矩阵的突出奇异向量,用于降低图像。在这里,突出的奇异向量是通过有效但多样化的近似技术来揭示的,而不是使用诸如单数值分解(SVD)之类的框架来显式计算它们,从而遇到$ \ Mathcal {o}(o}(o}(n^6)$)$操作。最后,我们比较了使用有或没有单数矢量近似技术的拟议DeNoising算法的计算时间和噪声过滤性能。
With the advent of sophisticated cameras, the urge to capture high-quality images has grown enormous. However, the noise contamination of the images results in substandard expectations among the people; thus, image denoising is an essential pre-processing step. While the algebraic image processing frameworks are sometimes inefficient for this denoising task as they may require processing of matrices of order equivalent to some power of the order of the original image, the neural network image processing frameworks are sometimes not robust as they require a lot of similar training samples. Thus, here we present a manifold-based noise filtering method that mainly exploits a few prominent singular vectors of the geodesics' Gramian matrix. Especially, the framework partitions an image, say that of size $n \times n$, into $n^2$ overlapping patches of known size such that one patch is centered at each pixel. Then, the prominent singular vectors, of the Gramian matrix of size $n^2 \times n^2$ of the geodesic distances computed over the patch space, are utilized to denoise the image. Here, the prominent singular vectors are revealed by efficient, but diverse, approximation techniques, rather than explicitly computing them using frameworks like Singular Value Decomposition (SVD) which encounters $\mathcal{O}(n^6)$ operations. Finally, we compare both computational time and the noise filtration performance of the proposed denoising algorithm with and without singular vector approximation techniques.